Triangles in Euclidean Arrangements

نویسندگان

  • Stefan Felsner
  • Klaus Kriegel
چکیده

The number of triangles in arrangements of lines and pseudolines has been object of some research Most results however concern arrangements in the projective plane In this article we add results for the number of triangles in Euclidean arrange ments of pseudolines Though the change in the embedding space from projective to Euclidean may seem small there are interesting changes both in the results and in the techniques required for the proofs In Levi proved that a nontrivial arrangement simple or not of n pseudolines in the projective plane contains n triangles To show the corresponding result for the Euclidean plane namely that a simple arrangement of n pseudolines contains n triangles we had to nd a completely di erent proof On the other hand a non simple arrangements of n pseudolines in the Euclidean plane can have as few as n triangles and this bound is best possible We also discuss the maximal possible number of triangles and some extensions Mathematics Subject Classi cations A C

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similar Triangles, Another Trace of the Golden Ratio

In this paper we investigate similar triangles which are not congruent but have two pair congruent sides. We show that greatest lower bound of values for similarity ratio of such triangles is golden ratio. For right triangles, we prove that the supremum of values for similarity ratio is the square root of the golden ratio.

متن کامل

Simple Euclidean Arrangements with No (>= 5)-Gons

It is shown that if a simple Euclidean arrangement of n pseudolines has no (≥ 5)–gons, then it has exactly n − 2 triangles and (n − 2)(n − 3)/2 quadrilaterals. We also describe how to construct all such arrangements, and as a consequence we show that they are all stretchable.

متن کامل

Arrangements of Pseudocircles: Triangles and Drawings

A pseudocircle is a simple closed curve on the sphere or in the plane. The study of arrangements of pseudocircles was initiated by Grünbaum, who defined them as collections of simple closed curves that pairwise intersect in exactly two crossings. Grünbaum conjectured that the number of triangular cells p3 in digon-free arrangements of n pairwise intersecting pseudocircles is at least 2n−4. We p...

متن کامل

Arrangements of Pseudocircles: On Circularizability

An arrangement of pseudocircles is a collection of simple closed curves on the sphere or in the plane such that every pair is either disjoint or intersects in exactly two crossing points. We call an arrangement intersecting if every pair of pseudocircles intersects twice. An arrangement is circularizable if there is a combinatorially equivalent arrangement of circles. Kang and Müller showed tha...

متن کامل

A New Technique for Analyzing Substructures in Arrangements of Piecewise Linear Surfaces*

We present a simple but powerful new probabilistic technique for analyzing the combinatorial complexity of various substructures in arrangements of piecewise-linear surfaces in higher dimensions. We apply the technique (a) to derive new and simpler proofs of the known bounds on the complexity of the lower envelope, of a single cell, or of a zone in arrangements of simplices in higher dimensions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 22  شماره 

صفحات  -

تاریخ انتشار 1998